Design Programming

DECO1012
Rob Saunders
Rob Saunders

web: http://web.arch.usyd.edu.au/~rob

e-mail: rob@arch.usyd.edu.au

office: Room 274, Wilkinson Building
Images & Recursion
Parameterised Drawing
void setup() {
 size(100, 100);
 smooth();
 fill(0);
 face(20, 80, 26);
}

void face(int x, int y, int gap) {
 line(x, 0, x, y); // Nose Bridge
 line(x, y, x+gap, y); // Nose
 line(x+gap, y, x+gap, height);
 int mouthY = (height+y)/2;
 line(x, mouthY, x+gap, mouthY); // Mouth
 ellipse(x-gap/2, y/2, 5, 5); // Left eye
 ellipse(x+gap, y/2, 5, 5); // Right eye
}
Images
Images

- Processing can load images, display them on the screen, and change their size, position, opacity, and tint.
 - The data type for images is called PImage.
 - Images are loaded from file using loadImage().
 - Images are displayed using image().
 - Images can be manipulated with tint().
Loading Images

- Images can be loaded from files using the `loadImage()` function.
 - The single parameter specifies the filename.
 - The filename should be enclosed in quotes and include the format extension, e.g., “pup.gif”, “kat.jpg”, “fsh.png”.
 - The image must be in your sketch’s data folder:
 - Add the image using Sketch > Add File; or,
 - Drag the image onto the Processing window.
Displaying Images

- The `image()` function is used to display images on screen.
 - The name parameter must be a `PImage` variable, created using `loadImage()`.
 - The `x` and `y` parameters set the position relative to the current origin.
 - The optional `width` and `height` parameters allow the image to be scaled.

```java
image(name, x, y)
image(name, x, y, width, height)
```
Displaying Images

PImage img;
// Image must be in the sketch's "data" folder
img = loadImage("puppy.jpg");
image(img, 0, 0);

PImage img;
// Image must be in the sketch's "data" folder
img = loadImage("puppy.jpg");
image(img, 20, 20, 60, 60);
Tinting Images

Images are coloured using \texttt{tint()}. All images drawn after running \texttt{tint()} will be tinted by the colour specified in the parameters. This has no permanent effect on the images. Running the \texttt{noTint()} function disables the coloration for all images drawn after it is run.

\texttt{tint(gray)}
\texttt{tint(gray, alpha)}
\texttt{tint(value1, value2, value3)}
\texttt{tint(value1, value2, value3, alpha)}
\texttt{tint(color)}
Tinting Images

PImage img;
img = loadImage("puppy.jpg");
tint(102); // Tint gray
image(img, 0, 0);
noTint(); // Disable tint
image(img, 50, 0);

PImage img;
img = loadImage("puppy.jpg");
tint(0,153, 204); // Tint blue
image(img, 0, 0);
noTint(); // Disable tint
image(img, 50, 0);
Tinting Images

› Like `fill()` and `stroke()` the parameters for `tint()` are based in the current colour space determined by `colorMode()`.

› For example, using HSB tints can be specified in terms of hue, saturation and brightness.
Changing Opacity

- The opacity of an image can also be changed using `tint()`.
- To make an image transparent without changing its colour, set the tint to white.

```javascript
PImage img;
img = loadImage("puppy.jpg");
background(255);
tint(255, 51);
// Draw the image 10 times
for (int i = 0; i < 10; i++) {
    image(img, i*10, 0);
}
```
Transparency in Images

- GIF & PNG images keep their transparency when displayed in Processing.
 - GIF images have only 1-bit transparency
 - PNG format supports 8-bit transparency

```java
// Loads a PNG image transparency
PImage img;
img = loadImage("puppy_sprite.png");
background(255);
image(img, 0, 0);
image(img, -20, 0);
```
Recursion
Recursion

- Recursion is a common programming technique, where a function calls itself
 - Recursion is commonly used to process tree-like structures, e.g., HTML files

- Recursion can be used to draw complex fractal-like structures
 - Recursion makes drawing structures with self-similarity simple
void setup() {
 background(255);
 drawV(width/2, height, height/2, 10);
}

void drawV(int x, int y, int size, int num) {
 line(x, y, x - size/2, y - size);
 line(x, y, x + size/2, y - size);
 if (num > 0) {
 drawV(x - size/2, y - size, size/2, num-1);
 drawV(x + size/2, y - size, size/2, num-1);
 }
}
void setup() {
 size(200, 200);
 background(255);
 fill(0, 32);
 noStroke();
 smooth();
 drawCircle(width/2, height/2, width/2, 10);
}

void drawCircle(int x, int y, int r, int num) {
 ellipse(x, y, r*2, r*2);
 if (num > 0) {
 drawCircle(x - r/2, y, r/2, num-1);
 drawCircle(x + r/2, y, r/2, num-1);
 }
}
void drawCircle(float x, float y, int r, int num)
{
 ellipse(x, y, r*2, r*2);
 if (num > 0) {
 int branches = int(random(2, 6));
 for (int i = 0; i < branches; i++) {
 float a = random(0, TWO_PI);
 float newx = x + cos(a) * 6.0 * num;
 float newy = y + sin(a) * 6.0 * num;
 drawCircle(newx, newy, r/2, num-1);
 }
 }
}
Time & Date
Seconds, Minutes, Hours

- Processing programs can read the value of the computer’s clock.
 - The current second is read with the `second()` function, which returns values from 0 to 59.
 - The current minute is read with the `minute()` function, which also returns values from 0 to 59.
 - The current hour is read with the `hour()` function, which returns values from 0 to 23.
Telling the Time

int s = second(); // Returns values from 0 to 59
int m = minute(); // Returns values from 0 to 59
int h = hour(); // Returns values from 0 to 23
println("The time is " + h + ":" + m + ":" + s);

The time is 14:31:27
int lastSecond = second();

void draw() {
 if (second() != lastSecond) {
 println(hour() + "\"\":\" + minute() + "\"\":\" + second());
 lastSecond = second();
 }
}

14:32:15
14:32:16
14:32:17
void setup() {
 textFont(loadFont("Monaco-14.vlw"));
 textAlign(CENTER, CENTER);
}

void draw() {
 background(0);
 int s = second();
 int m = minute();
 int h = hour();
 // The nf() function spaces the numbers nicely
 String t = nf(h,2) + ":" + nf(m,2) + ":" + nf(s,2);
 text(t, width/2, height/2);
 saveFrame();
}
void draw() {
 translate(width/2, height/2);
 background(0);
 noStroke();
 fill(80);
 // Angles for sin() and cos() start at 3 o'clock,
 // subtract HALF_PI to make them start at the top
 ellipse(0, 0, 80, 80);
 stroke(255);
 float s = map(second(), 0, 60, 0, TWO_PI) - HALF_PI;
 float m = map(minute(), 0, 60, 0, TWO_PI) - HALF_PI;
 float h = map(hour() % 12, 0, 12, 0, TWO_PI) - HALF_PI;
 line(0, 0, cos(s) * 38, sin(s) * 38);
 line(0, 0, cos(m) * 30, sin(m) * 30);
 line(0, 0, cos(h) * 25, sin(h) * 25);
}

14:03:26
millis()

› Each Processing program counts the time passed since the program started.
› This time is stored in milliseconds (thousandths of a second) and is obtained with the `millis()` function.
 › 2000 milliseconds is 2 seconds
 › 200 milliseconds is 0.2 seconds

› Use the `millis()` function to trigger events and calculate the passage of time.
Using `millis()` to Animate

// Uses millis() to start a line in motion
// three seconds after the program starts
int x = 0;

void draw() {
 if (millis() > 3000) {
 x++;
 }
 line(x, 0, x, 100);
}
Using `millis()` to Animate

// Uses millis() to start a line in motion
// three seconds after the program starts
int x = 0;

void draw() {
 float sec = millis() / 1000.0;
 if (sec > 3.0) {
 x++;
 }
 line(x, 0, x, 100);
}
Timing Functions

```c
void drawCircle(float x, float y, int r, int num) {
    int startMillis = millis();
    ellipse(x, y, r*2, r*2);
    if (num > 0) {
        int branches = int(random(2, 6));
        for (int i = 0; i < branches; i++) {
            float a = random(0, TWO_PI);
            float newx = x + cos(a) * 6.0 * num;
            float newy = y + sin(a) * 6.0 * num;
            drawCircle(newx, newy, r/2, num-1);
        }
    }
    println("drawCircle() took " + millis() - startMillis + "ms");
}
```
Lab Exercises
Lab Exercises

- Create a function for drawing a face.
 - Use two parameters to change its position and two more to change the shape. Using your function, draw 9 faces in the display window in a regular 3 * 3 matrix. Use different parameters to give each face drawn a unique shape.
- Draw two images in the display window.
- Draw three images, each with a different tint.
- Load a GIF or PNG image with transparency and create a collage by layering the image.
Lab Exercises

• Modify the drawCircle() example to draw a complex design using recursion.
 • Add colour to your sketch.

• Make a simple clock to run an animation for two seconds at the beginning of each minute.

• Create an abstract clock that communicates the passage of time through graphical quantity rather than numerical symbols.